Basic Algebraic Identities

Mathematicians are the laziest people in the world. They don’t like to solve problems in a way a normal person would do. If you ask them how they did it, they will say “that’s basic” or “it’s too obvious”. Basic identities are techniques used by lazy people to solve problems without actually solving. We are just wondering how they solve it in a matter of seconds. A normal person may call this a formula; Mathematicians call this only basic identity. Let’s learn this technique so that we can call it basic as well.
Based on Binomial Expansion

(x\pm y)^2=x^2\pm 2xy+y^2

(x+y+z)^2=x^2+y^2+z^2+2xy+2xz+2yz
(x- y)^3=x^3-3x^2y+3xy^2+y^3
(x+y)^3=x^3+3x^2y+3xy^2+y^3

Based on Factoring

x^2-y^2=(x+y)(x-y)
x^3+y^3=(x+y)(x^2-xy+y^2)
x^3-y^3=(x-y)(x^2+xy+y^2)
x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)+3xyz
x^4-y^4=(x^2+y^2)(x^2-y^2)

Applications:

Worked Problem 1:
The sum of two numbers is 40 and their product is 10. What is the sum of the squares of two numbers?

Solution:
Let x and y are the numbers.
Given: x+y=40 , xy=10, Required: x^2+y^2
Using basic identities we don’t need to find the individual numbers and get each of their squares and add them up.
(x+ y)^2=x^2+2xy+y^2
Rearrange this, since we already have given x+y=40 and xy=10

x^2+y^2=(x+ y)^2-2xy
x^2+y^2=(40)^2-2(10)
x^2+y^2=1580

Worked Problem 2:
The sum of two numbers is 20. Their product is 5. Find the positive difference of two numbers.

Solution:
Let x and y are the numbers

Given: x+y=20, xy=5 Required: x-y

We need to find an identity that will express the difference of two numbers.

(x- y)^2=x^2-2xy+y^2
(x- y)^2=x^2+y^2- 2xy

but x^2+y^2=(x+ y)^2-2xy
By substituting to x^2+y^2

(x- y)^2= (x+ y)^2-2xy-2xy
(x- y)^2= (x+ y)^2-4xy
(x- y)^2=(20)^2-4(4)
(x- y)^2=384
x-y=8\sqrt{6}

Worked Problem 3:
Given that x^2-3x+1=0, find the value of x^4+\displaystyle\frac{1}{x^4}

Solution:

x^2-3x+1=0

Rearrange the equation

x^2+1=3x
\displaystyle\frac{x^2+1=3x}{x}
x+\displaystyle\frac{1}{x}=3
(x+\displaystyle\frac{1}{x})^2=3^2
x^2+2(x)(\displaystyle\frac{1}{x})+\displaystyle\frac{1}{x^2}=9 , (x)(\displaystyle\frac{1}{x})  is  1.
x^2+\displaystyle\frac{1}{x^2}=7
(x^2+\displaystyle\frac{1}{x^2}=7)^2
x^4+2(x^2)(\displaystyle\frac{1}{x^2})+\displaystyle\frac{1}{x^4}=49 , (x^2)(\displaystyle\frac{1}{x^2})  is  1.
x^4+\displaystyle\frac{1}{x^4}=49-2
x^4+\displaystyle\frac{1}{x^4}=47

Dan

Dan

Blogger and a Math enthusiast. Has no interest in Mathematics until MMC came. Aside from doing math, he also loves to travel and watch movies.
Dan

Latest posts by Dan (see all)

You may also like...

5 Responses

  1. Tayna says:

    Hello this is kind of of off topic but I was wanting to know if blogs use WYSIWYG editors or if you have to manually code with HTML. I’m starting a blog soon but have no coding expertise so I wanted to get guidance from someone with experience. Any help would be enormously appreciated!

  2. Wonderful work! This is the type of info that should be shared around the internet. Shame on Google for not positioning this post higher! Come on over and visit my site . Thanks =)

  3. 4I7jiH I was suggested this blog through my cousin. I am now not sure whether this post is written through him as no one else realize such distinctive about my trouble. You are incredible! Thank you!

  4. pron best says:

    2BHA5q There as certainly a great deal to learn about this issue. I really like all the points you ave made.

  5. 270654 915806Aw, this was a quite good post. In concept I wish to put in writing like this moreover ?taking time and precise effort to make an exceptional post?but what can I say?I procrastinate alot and surely not appear to get 1 thing done. 201334

Leave a Reply

Your email address will not be published.