Method in Determining Calendar Dates

Mayan Calendar

 

 

What day will the Christmas day fall 50 years from now? What day of the week is your birthday? Isn’t it fascinating to answer that question accurately? In this post I will share a way to make it possible.  You will be stunned that determining the answers to such questions is just a matter of substitution.

Before we start, let me introduce some tools that we need.

Integer Division – a division that is only taking the integer part of the quotient.

Example:      \displaystyle\frac{25}{7}=3

Modulo Division – a division that is taking the remainder as the answer and not the quotient.

Example:     25mod7=4, the same thing if we say the remainder of 25 when divide by 7 is 4.

Note: all division that will be used here is strictly integer division unless specified.

Formula in determining the day of the week a certain date falls.

Step 1: Solve for A,Y and M

A=\displaystyle\frac{14-Months}{12}

Months in number( January=1, February=2,March=3,etc.)

Y= Year-A

M=Months+12A-2

d=(day+Y+\displaystyle\frac{Y}{4} - \displaystyle\frac{Y}{100}+\displaystyle\frac{Y}{400}+\displaystyle\frac{31M}{12})mod7

day- is the specific date, Y- year

d-is the day of the week

0= Sunday

1=Monday

2=Tuesday

3=Wednesday

4=Thursday

5=Friday

6=Saturday

 Sample Problem 1:

What day of the week does November 25, 2013 have fallen?

Solution:

Solve for A:  Months=11(November)

A=\displaystyle\frac{14-11}{12}

A=0

 Solve for Y:

Y= Year-A

Y= 2013-0

Y= 2013

 Solve for M:

M=11+12(0)-2

M=9

 Solve for d:

d=(25+2013+\displaystyle\frac{2013}{4} - \displaystyle\frac{2013}{100}+\displaystyle\frac{2013}{400}+\displaystyle\frac{31(9)}{12})mod7

d=(25+2013+503-20+5+23)mod7

d=2549mod7

d=1mod7 , meaning that d=1, 1=Monday. I have chosen the date so that you can check your calendar that it is really correct.

Sample Problem 2:

What day will the Christmas day fall 50 years from now?

Solution:

The date will be December 25,2063.

Solve for A:

A=\displaystyle\frac{14-12}{12}

A=0

Solve for Y:

Y= Year-A

Y= 2063-0

Y= 2063

Solve for M:

M=12+12(0)-2

M=10

Solve for d:

d=(25+2063+\displaystyle\frac{2063}{4} - \displaystyle\frac{2063}{100}+\displaystyle\frac{2063}{400}+\displaystyle\frac{31(10)}{12})mod7

d=(25+2063+515-20+5+25)mod7

d=2613mod7

d=2mod7, or d=2 and that is Tuesday.

Now try to check what day you were born.

 

Practice Problem:

1. What day of the week does December 7, 1945 have fallen?

2. World War 1 started July 28, 1914. What day of the week was it?

3. Little Boy is the name of the atomic bomb dropped in Hiroshima, Japan on August 6, 1945. What day of the week that happened?

4. Marie Skłodowska-Curie is the real name of Polish Marie Curie, the first woman who won Nobel Prize in both Chemistry and Physics with her work in radioactivity. She was born on November 7,1867. What day was that?

5. I was born September 22, 1989. What day of the week does that fallen?

Answer will be available soon

Dan

Dan

Blogger and a Math enthusiast. Has no interest in Mathematics until MMC came. Aside from doing math, he also loves to travel and watch movies.
Dan

Latest posts by Dan (see all)

You may also like...

2 Responses

  1. I’m also writing to let you know of the cool experience my daughter had checking yuor web blog. She learned several issues, including what it’s like to possess an amazing giving mindset to get most people without difficulty fully understand chosen tortuous issues. You really exceeded people’s expected results. Thank you for churning out such great, safe, educational and also unique tips on the topic.

  2. I am curious to locate out what blog system you’re utilizing? Im having some small security problems with my latest site and Id like to find something a lot more risk-free. Do you’ve any suggestions? Hmm it looks like your weblog ate my initial comment (it was super long) so I guess Ill just sum it up what I wrote and say, Im thoroughly enjoying your weblog. I too am an aspiring weblog blogger but Im still new to everything. Do you’ve any guidelines and hints for rookie weblog writers? Id definitely appreciate it.

Leave a Reply

Your email address will not be published. Required fields are marked *